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Abstract

This research investigates a particular category of second-order stochastic differential equations
driven by Q-Wiener processes. We make significant contributions by demonstrating results regard-
ing existence and uniqueness under a Weak condition, which is less stringent than the conventional
Lipschitz criterion. Additionally, we outline conditions that guarantee the controllability of the
mild solution, utilizing the theory of stopping times.

1 Introduction

In this paper, we delve into the approximate controllability of a specific second-order stochastic
differential equation, formulated as follows:{
d(Z ′(τ)− f1(τ, Z(τ), U(τ)) = [AZ(τ) +BU(τ) + f2(τ, Z(τ), U(τ))]dτ + f3(τ, Z(τ), U(τ))dB(τ),

Z(0) = z0, Z ′(0) = z00, τ ∈ [0, T ],

(1)
set within the context of a real separable Hilbert space H2. Here, B represents a given H1-

valued Wiener process characterized by a positive nuclear covariance operator Q, defined on a
complete probability space (Ω,F ,P), with Trace(Q) < ∞. The process is further equipped with a
normal filtration {Fτ}τ≥0 generated by B. The linear operator A : D(A) ⊂ H2 → H2 is a closed
linear operator that generates a strongly cosine-family in H2. Additionally, B : H3 → H2 is a
bounded linear operator, while the functions f1, f2 : [0, T ]× H2 × H3 → H2 and f3 : [0, T ]× H2 ×
H3 → L2(H0,H2) are measurable mappings. Here, Hi denotes a real separable Hilbert space, and
L0 = L2(H0,H2) = L2(Q1/2H1,H2) is the space of bounded, linear, Q-Hilbert–Schmidt operators
from H0 to H2. Notably, η0 and ξ0 are F0-measurable random variables in H2 that are independent
of B and have finite moments of order p ≥ 2, while U : Ω×[0, T ] → H3 serves as the control function.

We define the concept of a ’Mild Solution’ for the equation (1), as detailed in Section 2.

Definition 1.1 A stochastic process X ∈ Cp([0, T ],H2) is classified as a mild solution of equation
(1) if, for any U ∈ Cp([0, T ],H3), it satisfies the following stochastic integral equation almost
surely:

Z(τ) = C(τ)Z(0) + S(τ)(Z ′(0)− f1(0, Z(0), U(0))) +

∫ τ

0

S(τ − v)BU(v)dv

+

∫ τ

0

C(τ − v)f1(v, Z(v), U(v))dv +

∫ τ

0

S(τ − v)f2(v, Z(v), U(v))dv

+

∫ τ

0

S(τ − v)f3(v, Z(v), U(v))dB(v).

In recent years, there has been a surge of interest in control problems framed as abstract differ-
ential equations [4, 3]. Stochastic systems provide a robust framework for modeling and analyzing
phenomena such as population dynamics, financial market behavior, and thermal processes in
materials with memory.
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Modern control theory emphasizes the significance of controllability, which serves as a foun-
dation for addressing challenges in both deterministic and stochastic environments. Calman’s
pioneering work on controllability in the 1960s set the stage for subsequent advancements in the
field. Subsequent studies have explored various dimensions of controllability, including exact con-
trollability [7, 8], optimal control [6], and approximate controllability [6, 2].

Numerous studies have turned to Gronwall’s inequality as a means to establish the existence
and uniqueness of solutions. However, the importance of finite factors is often neglected. While
some credible sources apply rigorous methodologies, many researchers ultimately rely on Gronwall’s
inequality, which can create challenges. Specifically, continuity of the solution can only be assured
if it remains bounded. The literature suggests [1] that a prudent strategy is to halt the process
when solutions reach elevated values to mitigate this issue. In our approach, we also advocate for
bounding these factors and incorporate stopping times to preserve generality. This aspect is crucial
since the Lipschitz conditions serve as a specific case of our investigation, making the Gronwall
lemma particularly relevant in this context.

2 Preliminaries and Notations

In this section, we establish a foundational framework encompassing three separable Hilbert spaces:
H1, H2, and H3. We leverage essential concepts from previous studies to introduce Gaussian
stochastic processes and Q-Wiener processes.

A stochastic process defined in H2 is considered Gaussian if it follows a Gaussian distribution
across any selection of time points [1]. On the other hand, a Q-Wiener process in H1 possesses
specific characteristics related to its trajectories and increments, governed by a nonnegative trace
class operator Q.

Let us introduce the following definitions under the condition p ≥ 2:

• (Ω,F , (Fτ )τ∈[0,T ],P): This notation signifies a complete probability space accompanied by a
normal filtration generated by B, with F = FT .

• Lp(Ω,FT ,P,H2): This denotes the Banach space comprising all stochastic processes Z :
Ω× [0, T ] → H2 such that, for every τ ∈ [0, T ], the random variable Z(τ) is FT -measurable,
and E ∥Z(τ)∥pH2

< +∞.

• Cp([0, T ],H2): This represents the Banach space of progressively measurable and continuous

stochastic processes Z : Ω× [0, T ] → H2 for which E
(
supτ∈[0,T ] ∥Z(τ)∥pH2

)
< +∞.

Cosine Families and Second-Order Cauchy Problems

In this section, we investigate the concept of cosine families and their association with second-order
Cauchy problems, drawing a parallel to the relationship between C0-semigroups and first-order
Cauchy problems. For an in-depth exploration of continuous cosine and sine families, refer to
[5, 9].

Definition 2.1 A strongly continuous cosine family {C(τ)}τ∈R ⊂ L(H2) is characterized by the
following properties:

1. Chapman-Kolmogorov Equation: C(τ + v) = 2C(τ)C(v)− C(τ − v) for all τ, v ∈ R.

2. Identity Property: C(0) = I, where I denotes the identity operator.
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3. Strong Continuity: The mapping C(τ)y is strongly continuous in τ for every y ∈ H2.

The associated strongly continuous sine family {S(τ) =
∫ τ

0
C(v)dv : τ ∈ R} ⊂ L(H2) meets the

condition S(0) = 0 and displays strong continuity. The generator of a cosine family is represented
as (A,D(A)) and is defined by Ay = limα→0+ 2α−2(C(α)− I) for y ∈ D(A), where D(A) indicates
the domain of A.

According to the Hille-Yosida theorem, a strongly continuous cosine family can be generated
by an operator (A,D(A)) under necessary and sufficient conditions.

We also summarize several crucial properties of cosine families, including their boundedness,
their interplay with corresponding sine families, and additional attributes associated with the
generator A.

3 Key Finding

First we define the stochastic analogue of complete controllability and approximate controllability
concepts. Now let us introduce the following operators and sets

1. The operator LT
0 : Cp([0, T ],H3) → Lp (Ω,FT ,P,H2) is defined by

LT
0 U =

∫ T

0

S(T − v)BU(v)dv

The operator MT
0 : Lp (Ω,FT ,P,H2) → Cp([0, T ],H3) is defined by

MT
0 h = B∗S∗(T − τ)E (h|Fτ ) .

The controllability Gramian operator is defined by

ΛT
0 h =

∫ T

0

S(T − v)BB∗S∗(T − v)E (h|Fv) dv

2. The operator ΓT
u,τ ∈ L (H2,H3)

ΓT
u,τy =

∫ τ

u

S(τ − v)BB∗S∗(T − v)ydv,

The controllability operator ΓT
u,T ∈ L (H2,H3)

ΓT
u,T y =

∫ T

u

S(T − v)BB∗S∗(T − v)ydv, 0 ≤ τ < T.

Definition 3.1 The system described by Equation (1) is termed approximately controllable over the
interval [0, T ] if the range space R̄(T ) coincides with Lp (Ω,FT ,P,H2). If R(T ) equals Lp

H2
(Ω,FT ,P),

the system is termed exactly controllable. Here, R(T ) is defined as the set

{Z(T,Z(0), Z ′(0), U) : U ∈ Cp([0, T ],H3)}.

To formulate and prove our main results, we require the following assumptions. Let B(Hi)
represent the Borel sigma-algebra on the space Hi, while P denotes progressively measurable σ-
fields on Ω× [0, T ].
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(A0) The mappings C(v), S(v) : H2 → H2 form strongly continuous Cosine-families.

(A1) The differentiable functions f1, f2 : Ω× [0, T ]×H2×H3 → H2 and f3 : Ω× [0, T ]×H2×H3 →
L2(H0,H2) satisfy the following conditions:

(i) The mappings f1 and f2 are measurable from (P × B(H2)× B(H3)) into (H2,B(H2)).

(ii) The mapping f3 is measurable from (P×B(H2)×B(H3)) into (L2(Q1/2H1,H2),B(L2(Q1/2H1,H2))).

(A2) There exists a function N : [0, b]× [0,+∞) → [0,+∞), defined as (s, v) → N(s, v), such that:

E∥f1(s,X(s), U(s))∥ps2 + E∥f2(s,X(s), U(s))∥pS2
+ E∥f3(s,X(s), U(s))∥pL2( So,s2)

≤ N
(
s,E∥X(s)∥pS2

)
+N

(
s,E∥U(s)∥pS2

)
(2)

for all s ∈ [0, b] and all (X,U), (X̄, Ū) ∈ Lp (Ω,Fs, S2 × S3).

(A3) The function N(s, v) is locally integrable with respect to s for each fixed v ∈ [0,+∞) and is
continuous and non-decreasing in v for each fixed s ∈ [0, b].

v(s) = µ̃1(b) + µ̃2(b) + µ̃3(b)

∫ s

0

N(r, v(r))dr

has a global bounded solution E(s) on [0, b].

(A4) There is a function K : [0, b] × [0,+∞) → [0,+∞) such that: for all s ∈ [0, b] and all
(X,U), (X̄, Ū) ∈ Lp (Ω,Fs,S2 × S3)

E∥f1(s,X(s), U(s))− f1(s, X̄(s), Ū(s))∥pS2
+ E∥f2(s,X(s), U(s))− f2(s, X̄(s), Ū(s))∥pS2

+ E∥f3(s,X(s), U(s))− f3(s, X̄(s), Ū(s))∥pL2(S0,S2)

≤ K
(
s,E∥X(s)− X̄(s)∥pS2

)
+K

(
s,E∥U(s)− Ū(s)∥pS3

)
(A5) The function K(s, v) is locally integrable in s for each fixed v ∈ [0,+∞) and continuous and

non-decreasing in v for each fixed s ∈ [0, b]. Additionally, K(s, 0) = 0. If a non-negative,
continuous, bounded function z(s) for s ∈ [0, b] satisfies:{

z(s) ≤ µ̃3(b)
∫ s

0
K(r, z(r))dr, s ∈ [0, b]

z(0) = 0

for some µ̃3(b) > 0, then z(s) = 0 for all s ∈ [0, b].

(A6) Z(0) and Z ′(0) are F0 -measurable H2-valued random variables independent of B with finite
p ≥ 2 moments.

(A7) There exists a constant M0 > 0 for all 0 ≤ v < T , 0 < ||ε(εI + ΓT
v,T )

−1|| < M0.

(A8) There exists a constant Cp > 0 such that for all (y1, u1), (y2, u2) ∈ H2 × H3 and (ω, τ) ∈
Ω× [0, T ], the following inequalities hold:

∥f1(ω, τ, y, u)∥pH2
+ ∥f2(ω, τ, y, u)∥pH2

+ ∥f3(ω, τ, y, u)∥pL2(Q1/2H1,H2)
≤ Cp,

and and ε(εI + ΓT
v,T )

−1 −→
λ→0+

0 (converges to the zero operator as λ → 0+ in the strong

operator topology).
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Now we announce the main result. Let ε > 0. Initially, it is necessary to establish the existence of
a unique mild solution to the equation described by (1) under the specified control:

Uε(τ) = B∗S∗(T − τ)(εI + ΓT
0,T )

−1 (Eh− C(T )Z(0)− S(T )(Z ′(0)− f1(0, Z(0), U(0)))

−
∫ τ

0

B∗S∗(T − τ)(εI + ΓT
v,T )

−1C(T − v)f1(v, Z(v), U(v))dv

−
∫ τ

0

B∗S∗(T − τ)(εI + ΓT
v,T )

−1S(T − v)f2(v, Z(v), U(v))dv

−
∫ τ

0

B∗S∗(T − τ)(εI + ΓT
v,T )

−1S(T − v)f3(v, Z(v), U(v)dB(v)

+

∫ τ

0

B∗S∗(T − τ)(εI + ΓT
v,T )

−1h(v)dB(v),

with E
(∫ T

0
∥h(v)∥2L2(Q1/2H1,H2)

dv
) p

2

< ∞.

Theorem 3.2 Assuming that conditions (A0)−(A6), are satisfied, there is an unique mild solution
(Z,U) ∈ Cp([0, T ],H2) × Cp([0, T ],H3) to the system described by equation (1). Furthermore,
possesses a continuous modification.

Theorem 3.3 Under the assumptions (A0)− (A8), the stochochastic defferentiale equation (1) is
approximately controllable, i.e. for any h ∈ Lp (Ω,FT ,P,H2) ,

lim
ε−→0+

E ∥Z(T,Z(0), Z ′(0), Uε)− h∥pH2
= 0.
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